已知直线过点
且与抛物线
交于A、B两点,以弦AB为直径的圆恒过坐标原点O.
(1)求抛物线的标准方程;
(2)设是直线
上任意一点,求证:直线QA、QM、QB的斜率依次成等差数列.
已知椭圆:
的离心率为
,左焦点为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与曲线
交于不同的
、
两点,且线段
的中点
在圆
上,求
的值.
某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110), [140,150)后得到如下部分频率分布直方图.观察图形的信息,回答下列问题.
(Ⅰ)求分数在[120,130)内的频率;
(Ⅱ)若在同一组数据中,将该组区间的中点值(如:组区间[100,110)的中点值为=105)作为这组数据的平均分,据此估计本次考试的平均分;
(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.
数列的前
项和为
,
.
(Ⅰ)设,证明:数列
是等比数列;
(Ⅱ)求数列的前
项和
.
如图,是边长为2的正方形,
⊥平面
,
,
//
且
.
(Ⅰ)求证:平面⊥平面
;
(Ⅱ)求几何体的体积.
已知函数,
.
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)设的内角
、
、
的对边分别为
、
、
,满足
,
且
,求
、
的值.