假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.
(1)求X的分布列;
(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.
(本小题满分10分)
已知四棱锥P—ABCD的底面为直角梯形,AB//DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点。
(I)求AC与PB所成角的余弦值;
(II)求面AMC与面BMC所成二面角的余弦值的大小。
(选修4—5:不等式选讲)
设x是正数,求证:
(选修4—4:坐标系与参数方程)
已知两个圆的极坐标方程分别是,求这两个圆的圆心距。
(选修4—2:矩阵与变换)
已知矩阵,矩阵M对应的变换把曲线
变为曲线C,求曲线C的方程。
(选修4—1:几何证明选讲)
如图,AB是⊙O的直径,C、F为⊙O上的点,且CA平分∠BAF,过点C作CD⊥AF,交AF的延长线于点D。
求证:DC是⊙O的切线。