某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y=+2是否符合公司要求的奖励函数模型,并说明原因;
(2)若该公司采用模型函数y=作为奖励函数模型,试确定最小的正整数a的值.
求的最大值和最小值,
使式中的,
满足约束条件
.
用图表示不等式表示的平面区域.
有粮食和石油两种物资,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果见表.
![]() |
轮船运输量/![]() |
飞机运输量/![]() |
粮食 |
![]() |
![]() |
石油 |
![]() |
![]() |
现在要在一天内运输至少粮食和
石油,需至少安排多少艘轮船和多少架飞机?
某运输公司接受了向抗洪救灾地区每天送至少支援物资的任务.该公司有
辆载重
的
型卡车与
辆载重为
的
型卡车,有
名驾驶员,每辆卡车每天往返的次数为
型卡车
次,
型卡车
次;每辆卡车每天往返的成本费
型为
元,
型为
元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低?若只安排
型或
型卡车,所花的成本费分别是多少?
已知实数成等差数列,
成等比数列,且
。
求。