某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值Q(a).
(本小题满分12分)
设二次函数,函数
的两个零点为
.
(1)若求不等式
的解集;
(2)若且
,比较
与
的大小.
(本小题满分12分)
设椭圆C:+
=1(a>b>0)的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线l的倾斜角为60°,
AF=2
FB.
(I)求椭圆C的离心率;
(II)如果|AB|=,求椭圆C的方程.
(本小题满分12分)
已知函数f(x)=x2(x-3a)+1(a>0,x∈R).
(I)求函数y=f(x)的极值;
(II)函数y=f(x)在(0,2)上单调递减,求实数a的取值范围;
(III)若在区间(0,+∞)上存在实数x0,使得不等式f(x0)-4a3≤0能成立,求实数a的取值范围.
(本小题满分12分)
某同学参加3门课程的考试.假
设该同学第一门课程取得优秀成绩的概率为
,第二、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相互独立,记ξ为该生取得优秀成绩的课程数,其分布列为
ξ |
0 |
1 |
2 |
3 |
p |
![]() |
a |
b |
![]() |
(I)求该生至少有1门课程取得优秀成绩的概率;
(II)求p,q的值;
(III)求数学期望Eξ.
(本小题满分12分)
如图,已知三棱锥P—ABC中,PA⊥平面ABC,
AB⊥AC,PA=AC=AB,N为AB
上一点,
AB=4AN,M,S分别为PB,BC的中点.
(I)证明:CM⊥SN;
(II)求SN与平面CMN所成角的大小.