游客
题文

如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.

(1)求异面直线A1B与C1D所成角的余弦值;
(2)求平面ADC1与平面ABA1所成二面角的正弦值.

科目 数学   题型 解答题   难度 较难
知识点: 空间向量基本定理及坐标表示
登录免费查看答案和解析
相关试题

如图,四面体中,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求异面直线所成角余弦值的大小;
(Ⅲ)求点到平面的距离.

某高校在2013年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩共分五组,得到频率分布表如下表所示。

组号
分组
频数
频率
第一组
[160,165)
5
0.05
第二组
[165,170)
35
0.35
第三组
[170,175)
30
a
第四组
[175,180)
b
0.2
第五组
[180,185)
10
0.1

(Ⅰ)求的值;
(Ⅱ)为了能选出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取12人进入第二轮面试,求第3、4、5组中每组各抽取多少人进入第二轮的面试;考生李翔的笔试成绩为178分,但不幸没入选这100人中,那这样的筛选方法对该生而言公平吗?为什么?
(Ⅲ)在(2)的前提下,学校决定在12人中随机抽取3人接受“王教授”的面试,设第4组中被抽取参加“王教授”面试的人数为,求的分布列和数学期望.

已知函数
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)设的内角的对边分别为,若向量与向量共线,求的值.

已知函数的定义域是的导函数,且
内恒成立.
求函数的单调区间;
,求的取值范围;
(3)设的零点,,求证:.

已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上.
(1)求抛物线和椭圆的标准方程;
(2)过点的直线交抛物线两不同点,交轴于点,已知,则
是否为定值?若是,求出其值;若不是,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号