假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0.
(1)求p0的值;(参考数据:若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4)
(2)某客运公司用A、B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A、B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?
已知函数f(x)= +lnx的图像在点P(m,f(m))处的切线方程为y="x" ,
设.
(1)求证:当恒成立;
(2)试讨论关于的方程:
根的个数.
已知数列{a}中,a
=2,前n项和为S
,且S
=.
(1)证明数列{an+1-an}是等差数列,并求出数列{an}的通项公式
(2)设bn=,数列{bn}的前n项和为Tn,求使不等式Tn>
对一切n∈N*都成立的最大正整数k的值
如图,是等边三角形,
是等腰直角三角形,
,
交
于
,
.
(Ⅰ)求的值;
(Ⅱ)求.
已知函数满足
;
(1)求常数k的值;(2)若恒成立,求a的取值范围.
如图,在四棱锥中,底面
是边长为
的正方形,侧面
底面
,
若、
分别为
、
的中点.
(Ⅰ) //平面
;(Ⅱ) 求证:平面
平面
;