游客
题文

如图所示,已知抛物线方程为y2=4x,其焦点为F,准线为l,A点为抛物线上异于顶点的一个动点,射线HAE垂直于准线l,垂足为H,C点在x轴正半轴上,且四边形AHFC是平行四边形,线段AF和AC的延长线分别交抛物线于点B和点D.

(1)证明:∠BAD=∠EAD;
(2)求△ABD面积的最小值,并写出此时A点的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知A,B是椭圆的左,右顶点,,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点

(1)求椭圆C的方程;
(2)求三角形MNT的面积的最大值

如图1,在平面内,的矩形,是正三角形,将沿折起,使如图2,的中点,设直线过点且垂直于矩形所在平面,点是直线上的一个动点,且与点位于平面的同侧。

(1)求证:平面
(2)设二面角的平面角为,若,求线段长的取值范围。

己知在锐角ΔABC中,角所对的边分别为,且
(I )求角大小;
(II)当时,求的取值范围.

(本小题满分10分)选修4-5:不等式选讲
).
(Ⅰ)当时,求函数的定义域;
(Ⅱ)若当恒成立,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号