如图所示,已知抛物线方程为y2=4x,其焦点为F,准线为l,A点为抛物线上异于顶点的一个动点,射线HAE垂直于准线l,垂足为H,C点在x轴正半轴上,且四边形AHFC是平行四边形,线段AF和AC的延长线分别交抛物线于点B和点D.
(1)证明:∠BAD=∠EAD;
(2)求△ABD面积的最小值,并写出此时A点的坐标.
已知A,B是椭圆的左,右顶点,
,过椭圆C的右焦点F的直线交椭圆于点M,N,交直线
于点P,且直线PA,PF,PB的斜率成等差数列,R和Q是椭圆上的两动点,R和Q的横坐标之和为2,RQ的中垂线交X轴于T点
(1)求椭圆C的方程;
(2)求三角形MNT的面积的最大值
如图1,在平面内,是
的矩形,
是正三角形,将
沿
折起,使
如图2,
为
的中点,设直线
过点
且垂直于矩形
所在平面,点
是直线
上的一个动点,且与点
位于平面
的同侧。
(1)求证:平面
;
(2)设二面角的平面角为
,若
,求线段
长的取值范围。
己知在锐角ΔABC中,角所对的边分别为
,且
(I )求角大小;
(II)当时,求
的取值范围.
(本小题满分10分)选修4-5:不等式选讲
设(
).
(Ⅰ)当时,求函数
的定义域;
(Ⅱ)若当,
恒成立,求实数
的取值范围.