如图四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.
(1)证明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的体积.
设函数;
(Ⅰ)求证:函数在
上单调递增;
(Ⅱ)设,若直线PQ∥x轴,求P,Q两点间的最短距离.
如图,已知椭圆E的中心是原点O,其右焦点为F(2,0),过x轴上一点A(3,0)作直线与椭圆E相交于P,Q两点,且
的最大值为
.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设,过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.
如图,四边形PDCE为矩形,ABCD为梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=.
(Ⅰ)若M为PA中点,求证:AC∥平面MDE;
(Ⅱ)求平面PAD与PBC所成锐二面角的大小.
已知函数满足
,当
时
;当
时
.
(Ⅰ)求函数在(-1,1)上的单调区间;
(Ⅱ)若,求函数
在
上的零点个数.
在中,
分别为角
的对边,
的面积S满足
(Ⅰ)求角A的值;
(Ⅱ)若,设角B的大小为x,用x表示c,并求c的取值范围.