已知成等差数列.又数列
此数列的前n项的和Sn(
)对所有大于1的正整数n都有
.(1)求数列
的第n+1项;(2)若
的等比中项,且Tn为{bn}的前n项和,求Tn.
在△ABC中,角A,B,C所对的边分别为a,b,c,已知sinA+sinC=psinB(p∈R)且ac=
b2
(1)当时,求a,c的值;
(2)若角B为锐角,求p的取值范围.
(本小题满分14分)是首项
的等比数列,且
,
,
成等差数列,
(1)求数列的通项公式;
(2)若,设
为数列
的前
项和,若
≤
对一切
恒成立,求实数
的最小值.
(本小题满分12分) 如图,A,B,C是三个汽车站,AC,BE是直线型公路.已知AB=120 km,∠BAC=75°,∠ABC=45°.有一辆车(称甲车)以每小时96(km)的速度往返于车站A,C之间,到达车站后停留10分钟;另有一辆车(称乙车)以每小时120(km)的速度从车站B开往另一个城市E,途经车站C,并在车站C也停留10分钟.已知早上8点时甲车从车站A、乙车从车站B同时开出.
(1)计算A,C两站距离,及B,C两站距离;(2)若甲、乙两车上各有一名旅客需要交换到对方汽车上,问能否在车站C处利用停留时间交换.(3)求10点时甲、乙两车的距离.(可能用到的参考数据:
,
,
,
)
(本小题满分12分)某人以12.1万元购买了一辆汽车用于上班,每年用于保险费和汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……,依等差数列逐年递增.
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少)。