某工厂每月生产某种产品三件,经检测发现,工厂生产该产品的合格率为,已知生产一件合格品能盈利25万元,生产一件次品将会亏损10万元,假设该产品任何两件之间合
格与否相互没有影响.
(Ⅰ)求工厂每月盈利额ξ(万元)的所有可能取值;
(Ⅱ)若该工厂制定了每月盈利额不低于40万元的目标,求该工厂达到盈利目标的概率;
(Ⅲ)求工厂每月盈利额ξ的分布列和数学期望.
设函数
(Ⅰ)求函数的最小正周期和单调递增区
间;
(Ⅱ)△ABC,角A,B,C所对边分别为a,b,c,且求a的值.
已知数列中,
.
(1)求;
(2)求的通项公式;
(3)证明:
一动圆与圆
外切,同时与圆
内切.
(1)求动圆圆心的轨迹
的方程;
(2)在矩形中(如图),
分别是矩形四边的中点,
分别是
(其中
是坐标系原点)
的中点,直线
的交点为
,证明点
在轨迹
上.
一边长为的正方形铁片,铁片的四角截去四个边长均为
的小正方形,然后做成一个无盖方盒.
(1)将方盒的容积表示成的函数
;
(2)当是多少时,方盒的容积最大?最大容积是多少?