过椭圆的左顶点
作斜率为2的直线,与椭圆的另一个交点为
,与
轴的交点为
,已知
.
(1)求椭圆的离心率;
(2)设动直线与椭圆有且只有一个公共点
,且与直线
相交于点
,若
轴上存在一定点
,使得
,求椭圆的方程.
如图,在四棱锥中,
平面
,底面
是菱形,
,
为
与
的交点,
为
上任意一点.
(1)证明:平面平面
;
(2)若平面
,并且二面角
的大小为
,求
的值.
(本小题满分12分)如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答如下问题.
(1)求全班人数及分数在[80,100]之间的频率;
(2)现从分数在[80,100]之间的试卷中任取份分析学生失分情况,设抽取的试卷分数在[90,100]的份数为 X ,求 X 的分布列和数学望期.
(本小题满分12分)在中,内角
的对边分别为
已知
,
.
(1)求的面积;
(2)求
(本小题满分14分)已知函数(
).
(1)若,求曲线
在点
处的切线方程;
(2)若不等式对任意
恒成立.
①求实数的取值范围;
②试比较与
的大小,并给出证明(
为自然对数的底数,
).
(本小题满分12分)已知点,动点
满足直线
与直线
的斜率之积为
.
(1)求动点的轨迹
的方程;
(2)设过点的直线
与曲线
交于点
,记点
到直线
的距离为
.
①求的值;
②过点作直线
的垂线交直线
于点
,求证:直线
平分线段
.