游客
题文

如图,四边形ABCD为正方形,在四边形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=PD.

(1)证明:PQ⊥平面DCQ;
(2)CP上是否存在一点R,使QR∥平面ABCD,若存在,请求出R的位置,若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知数列{an}的前n项和为Sn,若Sn=2an+n,且bn=
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

设△ABC的三个内角A,B,C所对的边长分别为a,b,c.平面向量= (cosA,cosC),=(c,a),=(2b,0),且·(-)=0
(1)求角A的大小;
(2)当|x|≤A时,求函数f(x)=sinxcosx+sinxsin(x-)的值域.

设命题p:|2x-3|<1;命题q:lg2x-(2t+l)lgx+t(t+l)≤0,
(1)若命题q所表示不等式的解集为A={x|l0≤x≤100},求实数t的值;
(2)若p是q的必要不充分条件,求实数t的取值范围.

已知函数
(Ⅰ)当时,求曲线处的切线方程;
(Ⅱ)设函数,求函数的单调区间;
(Ⅲ)若,在上存在一点,使得成立,求的取值范围.

四棱锥A-BCDE的正视图和俯视图如下,其中正视图是等边三角形,俯视图是直角梯形.

(Ⅰ)若F为AC的中点,当点M在棱AD上移动,是否总有BF丄CM,请说明理由.
(Ⅱ)求三棱锥的高.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号