已知椭圆=1(a>b>0)的离心率为
,且过点P
,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1)求椭圆方程;
(2)若圆N与x轴相切,求圆N的方程;
(3)设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
某网站体育版块足球栏目组发起了“射手的连续进球与射手在场上的区域位置有关系”的调查活动,在所有参与调查的人中,持“有关系”“无关系”“不知道”态度的人数如表所示:
有关系 |
无关系 |
不知道 |
|
40岁以下 |
800 |
450 |
200 |
40岁以上(含40岁) |
100 |
150 |
300 |
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从持有关系态度的人中抽取45人,求n的值.
(2)在持“不知道”态度的人中,用分层抽样的方法抽取10人看作一个总体.①从这10人中选取3人,求至少一人在40岁以下的概率;②从这10人中人选取3人,若设40岁以下的人数为X,求X的分布列和数学期望.
已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点
(1)求证:AN∥平面 MBD;
(2)求异面直线AN与PD所成角的余弦值;
(3)求二面角M-BD-C的余弦值.
设△ABC的内角A、B、C所对的边分别为a、b、c,且.
(1)求角A的大小; (2)若,求△ABC的周长L的取值范围.
是否存在实数,使得
的最大值为
,若存在,求出
的值;若不存在,请说明理由.
求所给函数的值域
(1)
(2),