游客
题文

如图已知抛物线过点,直线两点,过点且平行于轴的直线分别与直线轴相交于点

(1)求的值;
(2)是否存在定点,当直线过点时,△与△的面积相等?若存在,求出点的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

(本大题12分)如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求直线C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG;
(3)求证:平面AA1C⊥面EFG .

(本大题10分)求圆心在上,与轴相切,且被直线截得弦长为的圆的方程.

(本大题10分)求经过直线L1:3x + 4y – 5 = 0与直线L2:2x – 3y + 8 = 0的交点M,且满足下列条件的直线方程
(1)与直线2x + y + 5 = 0平行 ;
(2)与直线2x + y + 5 = 0垂直;

解答题(本题共10分.请写出文字说明, 证明过程或演算步骤):
已知是椭圆上一点,是椭圆的两焦点,且满足
(Ⅰ)求椭圆方程;
(Ⅱ)设是椭圆上任两点,且直线的斜率分别为,若存在常数使,求直线的斜率.

填空题(本大题有2小题,每题5分,共10分.请将答案填写在答题卷中的横线上):
(Ⅰ)函数的最小值为.
(Ⅱ)若点在曲线上,点在曲线上,点在曲线上,则的最大值是.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号