在平面直角坐标系xOy中,已知点A(-1,1),P是动点,且△POA的三边所在直线的斜率满足kOP+kOA=kPA.
(1)求点P的轨迹C的方程;
(2)若Q是轨迹C上异于点P的一个点,且=λ
,直线OP与QA交于点M,问:是否存在点P,使得△PQA和△PAM的面积满足S△PQA=2S△PAM?若存在,求出点P的坐标;若不存在,说明理由.
已知数列中,
,
.
(1)求数列的通项公式;
(2)若数列满足
,数列
的前
项和为
,若不等式
对一切
恒成立,求
的取值范围.
如左图,四边形中,
是
的中点,
,
,
,
,将左图沿直线
折起,使得二面角
为
,如右图.
(1)证明:平面
;
(2)求直线与平面
所成角的余弦值.
某市准备从7名报名者(其中男5人,女3人)中选3人参加三个副局长职务竞选.
(1)设所选3人中女副局长人数为,求
的分布列及数学期望.
(2)若选派三个副局长依次到、
、
三个局商上任,求
局是男局长的情况下,
局是女副局长的概率.
已知锐角中的内角
、
、
的对边分别为
、
、
,定义向量
,
,且
.
(1)求的单调减区间;
(2)如果,求
的面积的最大值.
对于,把
表示
,当
时,
;当
时,
为0或1. 记
为上述表示中
为0的个数(例如:
,
,
,
),若
,
,
,则(1)
.
(2).