为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
0.6 |
1.2 |
2.7 |
1.5 |
2.8 |
1.8 |
2.2 |
2.3 |
3.2 |
3.5 |
2.5 |
2.6 |
1.2 |
2.7 |
1.5 |
2.9 |
3.0 |
3.1 |
2.3 |
2.4 |
服用B药的20位患者日平均增加的睡眠时间:
3.2 |
1.7 |
1.9 |
0.8 |
0.9 |
2.4 |
1.2 |
2.6 |
1.3 |
1.4 |
1.6 |
0.5 |
1.8 |
0.6 |
2.1 |
1.1 |
2.5 |
1.2 |
2.7 |
0.5 |
(1) 分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?
(2) 根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
A药 |
|
B药 |
|
0. 1. 2. 3. |
|
已知函数.
⑴当时,①若
的图象与
的图象相切于点
,求
及
的值;
②在
上有解,求
的范围;
⑵当时,若
在
上恒成立,求
的取值范围.
如图,椭圆与椭圆
中心在原点,焦点均在
轴上,且离心率相同.椭圆
的长轴长为
,且椭圆
的左准线
被椭圆
截得的线段
长为
,已知点
是椭圆
上的一个动点.
⑴求椭圆与椭圆
的方程;
⑵设点为椭圆
的左顶点,点
为椭圆
的下顶点,若直线
刚好平分
,求点
的坐标;
⑶若点在椭圆
上,点
满足
,则直线
与直线
的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.
如图,储油灌的表面积为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.
⑴试用半径表示出储油灌的容积
,并写出
的范围.
⑵当圆柱高与半径
的比为多少时,储油灌的容积
最大?
如图,直三棱柱中,点
是
上一点.
⑴若点是
的中点,求证
平面
;
⑵若平面平面
,求证
.
已知命题表示双曲线,命题
表示椭圆.
⑴若命题为真命题,求实数
的取值范围.
⑵判断命题为真命题是命题
为真命题的什么条件(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和 “既不充分也不必要条件”中的哪一个).