随机抽取某中学高一级学生的一次数学统测成绩得到一样本,其分组区间和频数是:,2;
,7;
,10;
,x;[90,100],2.其频率分布直方图受到破坏,可见部分如下图所示,据此解答如下问题.
(1)求样本的人数及x的值;
(2)估计样本的众数,并计算频率分布直方图中的矩形的高;
(3)从成绩不低于80分的样本中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求
的数学期望.
(本小题12分)已知函数(
)在区间
上有最大值
和最小值
.设
,
(1)求、
的值;
(2)若不等式在
上有解,求实数
的取值范围.
(本小题12分)设函数,
(1)求的周期和对称中心;
(2)求在
上值域.
(本小题12分)已知全集U=R,非空集合<
,
<
.
(1)当时,求
;
(2)命题,命题
,若q是p的必要条件,求实数
的取值范围.
已知点,
是抛物线
上相异两点,且满足
.
(Ⅰ)若的中垂线经过点
,求直线
的方程;
(Ⅱ)若的中垂线交
轴于点
,求
的面积的最大值及此时直线
的方程.
已知函数,
;
(Ⅰ)若函数在[1,2]上是减函数,求实数
的取值范围;
(Ⅱ)令,是否存在实数
,当
(
是自然对数的底数)时,函数
的最小值是
.若存在,求出
的值;若不存在,说明理由.