设等差数列的公差为,且.若设是从开始的前项数列的和,即,,如此下去,其中数列是从第开始到第)项为止的数列的和,即.(1)若数列,试找出一组满足条件的,使得: ;(2)试证明对于数列,一定可通过适当的划分,使所得的数列中的各数都为平方数;(3)若等差数列中.试探索该数列中是否存在无穷整数数列,使得为等比数列,如存在,就求出数列;如不存在,则说明理由.
如图,是的一条切线,切点为,都是的割线,已知. (1)证明:; (2)证明:.
已知函数,如果函数恰有两个不同的极值点,,且. (Ⅰ)证明:;(Ⅱ)求的最小值,并指出此时的值.
(1)求直线关于直线,对称的直线方程; (2)已知实数满足,求的取值范围.
如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形. (1)求证:DM∥平面APC; (2)求证:平面ABC⊥平面APC.
(Ⅰ)已知函数()的最小正周期为.求函数的单调增区间; (Ⅱ)在中,角对边分别是,且满足.若,的面积为.求角的大小和边b的长.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号