设等差数列的公差为
,且
.若设
是从
开始的前
项数列的和,即
,
,如此下去,其中数列
是从第
开始到第
)项为止的数列的和,即
.
(1)若数列,试找出一组满足条件的
,使得:
;
(2)试证明对于数列,一定可通过适当的划分,使所得的数列
中的各数都为平方数;
(3)若等差数列中
.试探索该数列中是否存在无穷整数数列
,使得
为等比数列,如存在,就求出数列
;如不存在,则说明理由.
(本小题满分14分)如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=.
(1)求椭圆C的标准方程;
(2)设点P为直线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.
(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,点D、E分别在边BC、
B1C1上,CD=B1E=AC,ÐACD=60°.
求证:(1)BE∥平面AC1D;
(2)平面ADC1⊥平面BCC1B1.
(本小题满分14分)已知函数f(x)=2
sinxco
sx-2sin2x.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-,
]上的最大值和最小值.
已知.
(1)时,求
的极值
(2)当时,讨论
的单调性。
(3)证明:(
,
,其中无理数
)