高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:
(1)该校近四年保送生人数的极差是 W.请将折线统计图补充完整;
(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进入高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.
如图, 是 的边 的中点,延长 交 的延长线于点 .
(1)求证: .
(2)若 , , ,求 的长.
为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:
(1)求“非常了解”的人数的百分比.
(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?
【操作发现】在计算器上输入一个正数,不断地按“ ”键求算术平方根,运算结果越来越接近1或都等于1.
【提出问题】输入一个实数,不断地进行“乘常数 ,再加上常数 ”的运算,有什么规律?
【分析问题】我们可用框图表示这种运算过程(如图 .
也可用图象描述:如图1,在 轴上表示出 ,先在直线 上确定点 , ,再在直线 上确定纵坐标为 的点 , ,然后在 轴上确定对应的数 , ,以此类推.
【解决问题】研究输入实数 时,随着运算次数 的不断增加,运算结果 ,怎样变化.
(1)若 , ,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;
(2)若 ,又得到什么结论?请说明理由;
(3)①若 , ,已在 轴上表示出 (如图2所示),请在 轴上表示 , , ,并写出研究结论;
②若输入实数 时,运算结果 互不相等,且越来越接近常数 ,直接写出 的取值范围及 的值(用含 , 的代数式表示)
定义:有三个内角相等的四边形叫三等角四边形.
(1)三等角四边形 中, ,求 的取值范围;
(2)如图,折叠平行四边形纸片 ,使顶点 , 分别落在边 , 上的点 , 处,折痕分别为 , .求证:四边形 是三等角四边形.
(3)三等角四边形 中, ,若 ,则当 的长为何值时, 的长最大,其最大值是多少?并求此时对角线 的长.
为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到 ;活动后,再次检查这部分学生的视力,结果如表所示.
分组 |
频数 |
|
2 |
|
3 |
|
5 |
|
8 |
|
17 |
|
5 |
(1)求所抽取的学生人数;
(2)若视力达到4.8及以上为达标,估计活动前该校学生的视力达标率;
(3)请选择适当的统计量,从两个不同的角度分析活动前后相关数据,并评价视力保健活动的效果.