某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是.
(1)求这支篮球队首次胜场前已经负了两场的概率;
(2)求这支篮球队在6场比赛中恰好胜了3场的概率;
(3)求这支篮球队在6场比赛中胜场数的期望和方差.
已知函数(
,
是实数常数)的图像上的一个最高点
,与该最高点最近的一个最低点是
,
(1)求函数的解析式及其单调增区间;
(2)在锐角三角形△ABC中,角A、B、C所对的边分别为,且
,角A的取值范围是区间M,当
时,试求函数
的取值范围.
如果函数的定义域为R,对于定义域内的任意
,存在实数
使得
成立,则称此函数具有“
性质”。
(1)判断函数是否具有“
性质”,若具有“
性质”,求出所有
的值;若不具有“
性质”,说明理由;
(2)已知具有“
性质”,且当
时
,求
在
上有最大值;
(3)设函数具有“
性质”,且当
时,
.若
与
交点个数为2013,求
的值.
已知数列的各项都为正数,
。
(1)若数列是首项为1,公差为
的等差数列,求
;
(2)若,求证:数列
是等差数列.
已知,点
依次满足
。
(1)求点的轨迹;
(2)过点作直线
交以
为焦点的椭圆于
两点,线段
的中点到
轴的距离为
,且直线
与点
的轨迹相切,求该椭圆的方程;
(3)在(2)的条件下,设点的坐标为
,是否存在椭圆上的点
及以
为圆心的一个圆,使得该圆与直线
都相切,如存在,求出
点坐标及圆的方程,如不存在,请说明理由.
据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距18
的A,B两家化工厂(污染源)的污染强度分别为
,它们连线上任意一点C处的污染指数
等于两化工厂对该处的污染指数之和.设
(
).
(1)试将表示为
的函数; (2)若
,且
时,
取得最小值,试求
的值.