学生的数学学习水平按成绩可分成8个等级,等级系数X依次为1,2, ,8,其中
为标准A,
为标准B.已知甲学校执行标准A考评学生,学生平均用于数学的学习时间为3.5小时/天;乙学校执行标准B考评学生,学生平均用于数学的学习时间为2.5小时/天.假定甲、乙两学校都符合相应的执行标准.
(1)已知甲学校学生的数学学习水平的等级系数X1的概率分布列如下所示:
| X1 |
5 |
6 |
7 |
8 |
| P |
0.4 |
a |
b |
0.1 |
且X1的数学期望EX1=6,求a、b的值;
(2)为分析乙学校学生的数学学习水平的等级系数X2,从该校随机选取了30名学生,相应的等级系数组成一个样本,数据如下:
3533855634
6347534853
8343447567
用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望;
(3)在(1)、(2)的条件下,哪个学校的数学学习效率更高?说明理由.
(注:
)
如图,在斜二测画法下,四边形A′B′C′D′是下底角为45°的等腰梯形,其下底长为5,一腰长为
,则原四边形的面积是多少?
如图,设椭圆
的左、右焦点分别为
,点
在椭圆上,
,
,
的面积为
.
(1)求该椭圆的标准方程;
(2)是否存在圆心在
轴上的圆,使圆在
轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.
如图,四棱锥
中,底面是以
为中心的菱形,
底面
,
,
为
上一点,且
.
(1)证明:
平面
;
(2)若
,求四棱锥
的体积.
已知函数
,其中
,且曲线
在点
处的切线垂直于
.
(1)求
的值;
(2)求函数
的单调区间与极值.
在 中,内角 所对的边分别为 ,且 .
(1)若
,求
的值;
(2)若
,且
的面积
,求
和
的值.