有甲、乙两个工厂生产同一种产品,产品分为一等品和二等品.为了考察这两个工厂的产品质量的水平是否一致,从甲、乙两个工厂中分别随机地抽出产品109件,191件,其中甲工厂一等品58件,二等品51件,乙工厂一等品70件,二等品121件.
(1)根据以上数据,建立2×2列联表;
(2)试分析甲、乙两个工厂的产品质量有无显著差别(可靠性不低于99%).
在长方体中,
,过
,
,
三点的平面截去长方体的一个角后,得到如图所示的几何体
,这个几何体的体积为
.
(1)证明:直线∥平面
;
(2)求棱的长;
(3)在线段上是否存在点
,使直线
与
垂直,如果存在,求线段
的长,如果不存在,请说明理由.
已知数列的各项均为正数,其前
项和为
,且满足
,
N
.
(1)求的值;
(2)求数列的通项公式;
(3)是否存在正整数, 使
,
,
成等比数列? 若存在, 求
的值; 若不存在, 请说明理由.
在中,
,
.
(Ⅰ)求的值;
(Ⅱ)求的值.
如果函数的定义域为
,对于定义域内的任意
,存在实数
使得
成立,则称此函数具有“
性质”.
(1)已知具有“
性质”,且当
时
,求
在
上的最大值.
(2)设函数具有“
性质”,且当
时,
.若
与
交点个数为2013个,求
的值.
已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C过点
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设点,过点F2作直线
与椭圆C交于A,B两点,且
,若
的取值范围