已知抛物线
的焦点为F2,点F1与F2关于坐标原点对称,以F1,F2为焦点的椭圆C过点
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设点
,过点F2作直线
与椭圆C交于A,B两点,且
,若
的取值范围
某工厂对某产品的产量与单位成本的资料分析后有如下数据:
| 月份 |
1 |
2 |
3 |
4 |
5 |
6 |
| 产量x千件 |
2 |
3 |
4 |
3 |
4 |
5 |
| 单位成本y元/件 |
73 |
72 |
71 |
73 |
69 |
68 |
(Ⅰ)求单位成本y与月产量x之间的线性回归方程.(其中已计算得:
,结果保留两位小数)
(Ⅱ)当月产量为12千件时,单位成本是多少?
为了解一大片经济林生长情况,随机测量其中的60株的底部周长(单位:Cm),将周长整理后画出的频率分布表和频率分布直方图如下:观察图形,回答下列问题:
| 组距 |
频数 |
频率 |
|
[ |
6 |
0.1 |
|
![]() |
0.15 |
||
![]() |
9 |
||
![]() |
18 |
||
![]() |
0.25 |
||
![]() |
3 |
0.05 |
|
| 合计 |

(1)补充上面的频率分布表和频率分布直方图.
(2)79.5~89.5这一组的频数、频率分别是多少?
(3)估计这次环保知识竞赛的及格率(60cm及以上为合格
已知函数
是定义在区间[-1.1]上的奇函数,且
,对于任意的m,n
[-1,1]有
(1)判断函数
的单调性(不要求证明);
(2)解不等式
;
(3)若 

对于任意的
恒成立,求实数t的取值范围.
已知偶函数
,对任意
,恒有
.求:
(1)
,
,
的值;
(2)
的表达式;
(3)
在
上的最值.
为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本
(万元)与处理量
(吨)之间的函数关系可近似的表示为:
,且每处理一吨废弃物可得价值为
万元的某种产品,同时获得国家补贴
万元.当
时,判断该项举措能否获利?如果能获利,求出最大利润;如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?