已知矩阵M=所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.
(本小题满分12分)如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.
已知a>0,函数.
⑴设曲线在点(1,f(1))处的切线为
,若
截圆
的弦长为2,求a;
⑵求函数f(x)的单调区间;
⑶求函数f(x)在[0,1]上的最小值.
一条斜率为1的直线与离心率e=
的椭圆C:
交于P、Q两点,直线
与y轴交于点R,且
,求直线
和椭圆C的方程;
已知函数的导函数
,数列{
}的前n项和为
,点
(n,
)均在函数
的图象上.若
=
(
+3)
⑴当n≥2时,试比较与
的大小;
⑵记试证
如图,椭圆C:焦点在
轴上,左、右顶点分别为A1、A,上顶点为B.抛物线C1、C:分别以A、B为焦点,其顶点均为坐标原点O,C1与C2相交于直线
上一点P.
⑴求椭圆C及抛物线C1、C2的方程;
⑵若动直线与直线OP垂直,且与椭圆C交于不同两点M、N,已知点Q(
,0),求
的最小值.