已知函数在
与
时都取得极值.
(1)求的值与函数
的单调区间
(2)若对,不等式
恒成立,求
的取值范围.
【改编题】已知函数的图象在
轴右侧的第一个最高点和第一个最低点的坐标分别为
和
.
(1)求函数的解析式;
(2)求函数在区间
上的最大值与最小值.
曲线是平面内到直线
和直线
的距离之积等于常数
的点的轨迹,设曲线
的轨迹方程
.
(1)求曲线的方程
;
(2)定义:若存在圆使得曲线
上的每一点都落在圆
外或圆
上,则称圆
为曲线
的收敛圆.判断曲线
是否存在收敛圆?若存在,求出收敛圆方程;若不存在,请说明理由.
选修4—5:不等式选讲
己知长方体的三条棱长分别为a、b、c,其外接球的半径为
(1)求长方体体积的最大值:
(2)设,求
的最大值
选修4—4:坐标系与参数方程
极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同. 已知曲线C的极坐标方程为
,斜率为
的直线
交y轴于点
.
(1)求C的直角坐标方程,的参数方程;
(2)直线与曲线C交于A、B两点,求
.
选修4-1:几何证明选讲
如图,已知圆上的,过C点的圆的切线与BA的延长线交于E点.
(Ⅰ)求证:∠ACE=∠BCD;
(Ⅱ)若BE=9,CD=1,求BC的长.