小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.
(1)根据图中的数据信息,写出众数;
(2)小明的父亲上班离家的时间在上午
之间,而送报人每天在
时刻前后
半小时内把报纸送达(每个时间点送达的可能性相等).
①求小明的父亲在上班离家前能收到报纸(称为事件)的概率;
②求小明的父亲周一至周五在上班离家前能收到报纸的天数的数学期望.
(本小题满分14分)已知函数,在
上最小值为
,最大值为
,求
的值.
(本小题满分14分)在平面直角坐标系中,设点
,直线
:
,点
在直线
上移动,
是线段
与
轴的交点,
.
(I)求动点的轨迹的方程
;
(II)设圆过
,且圆心
在曲线
上,
是圆
在
轴上截得的弦,当
运动时弦长
是否为定值?请说明理由.
(本小题满分14分)如图,为等边三角形,
为矩形,平面
平面
,
,
分别为
、
、
中点,
.
(Ⅰ)求证:
(Ⅱ)求多面体的体积
(本小题满分12分)一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
人数![]() |
10 |
15 |
20 |
25 |
30 |
35 |
40 |
件数![]() |
4 |
7 |
12 |
15 |
20 |
23 |
27 |
其中.
(Ⅰ)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图.(Ⅱ)求回归直线方程.(结果保留到小数点后两位)
(参考数据:,
,
,
,
,
)
(Ⅲ)预测进店人数为80人时,商品销售的件数.(结果保留整数)
(本小题满分12分)已知:,其中
,
,
,
(Ⅰ)求的对称轴和对称中心
(Ⅱ)求的单调递增区间