已知,
, 且
,
, 求
的值.
已知函数在
处,取得极值
(1) 求实数的值 (2) 求函数
的单调区间,并指出其单调性。
证明(1)已知,求证
(2)已知数列计算
由此推算
的公式,并用数学归纳法给出证明。
在棱长为的正方体
中,
是线段
的中点,
.
(Ⅰ) 求证:^
;
(Ⅱ) 求证:∥平面
;
(Ⅲ) 求三棱锥的体积.
(本小题共14分)
已知函数
(1)试用含有a的式子表示b,并求的单调区间;
(2)设函数的最大值为
,试证明不等式:
(3)首先阅读材料:对于函数图像上的任意两点,如果在函数图象上存在点
,使得
在点M处的切线
,则称AB存在“相依切线”特别地,当
时,则称AB存在“中值相依切线”。
请问在函数的图象上是否存在两点
,使得AB存在“中值相依切线”?若存在,求出一组A、B的坐标;若不存在,说明理由。
(本小题共12分)已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A、B的动点,且
面积的最大值为
(1)求椭圆C的方程及离心率e;(2)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A
转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明。