各项均为正数的数列{an}中,设,
,且
,
.
(1)设,证明数列{bn}是等比数列;
(2)设,求集合
.
在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E的棱AB上移动。
(I)证明:D1EA1D;
(II)AE等于何值时,二面角D1-EC-D的大小为。
一列火车在平直的铁轨上行驶,由于遇到紧急情况,火车以速度(单位:m/s)紧急刹车至停止。求:
(I)从开始紧急刹车到火车完全停止所经过的时间;
(Ⅱ)紧急刹车后火车运行的路程。
本题满分10分)
设函数为奇函数,其图象在点
处的切线与直线
垂直,导函数
的最小值为
.试求
,
,
的值。
已知函数.
(1)求的定义域;
(2)讨论的奇偶性;
(3)讨论在
上的单调性.
若非零函数对任意实数
均有
,且当
时,
;
(1)求证:(2)求证:
为减函数
(3)当时,解不等式