已知函数,
满足
,且
,
为自然对数的底数.
(1)已知,求
在
处的切线方程;
(2)若存在,使得
成立,求
的取值范围;
(3)设函数,
为坐标原点,若对于
在
时的图象上的任一点
,在曲线
上总存在一点
,使得
,且
的中点在
轴上,求
的取值范围.
(12分)已知:函数,
(1)求:函数f(x)的定义域;
(2)判断函数f(x)的奇偶性并说明理由;
(3)判断函数f(x)在()上的单调性,并用定义加以证明。
(9分)设函数如果
,求
的取值范围.
(9分)已知:函数的定义域为
,集合
,
(1)求:集合;
(2)若AB,求a的取值范围。
制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
(本小题满分13分)已知△ABC的周长为6,成等比数列,求
(1)△ABC的面积S的最大值;
(2)的取值范围。