已知数列{an}的各项均为正数的等比数列,且a1a2=2,a3a4=32,
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Sn=n2,(n∈N*),求数列{anbn}的前n项和Tn.
已知O为锐角△ABC的外心,AB=6,AC=10,,且2x+10y=5,则边BC的长
为.
已知f(x)=.
(1)当a=1时,求f(x)≥x的解集;
(2)若不存在实数x,使f(x)<3成立,求a的取值范围.
在直角坐标系中,曲线C1的参数方程为:(
为参数),以原点为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C2是极坐标方程为:
,
(1)求曲线C2的直角坐标方程;
(2)若P,Q分别是曲线C1和C2上的任意一点,求的最小值.
已知和
相交于A、B两点,过A点作
切线交
于点E,连接EB并延长交
于点C,直线CA交
于点D,
(1)当点D与点A不重合时(如图1),证明:ED2=EB·EC;
(2)当点D与点A重合时(如图2),若BC=2,BE=6,求的直径长.