已知数列{an}是等差数列,数列{bn}是等比数列,且对任意的n∈N*,都有a1b1+a2b2+a3b3+···+anbn=n·2n+3.
(1)若{bn}的首项为4,公比为2,求数列{an+bn}的前n项和Sn;
(2)若a1=8.
①求数列{an}与{bn}的通项公式;
②试探究:数列{bn}中是否存在某一项,它可以表示为该数列中其它r(r∈N,r≥2)项的和?若存在,请求出该项;若不存在,请说明理由.
一个袋子里装有7个球,其中有红球4个, 编号分别为1,2,3,4;白球3个,编号分别为1,2,3.从袋子中任取4个球(假设取到任何一个球的可能性相同).
(Ⅰ)求取出的4个球中, 含有编号为3的球的概率;
(Ⅱ)在取出的4个球中, 红球编号的最大值设为X,求随机变量X的分布列和数学期望.
已知向量,设函数
(1)求在区间
上的零点;
(2)在中,角
的对边分别是
,且满足
,求
的取值范围.
求下列不等式的解集
(Ⅰ)
(Ⅱ)
已知曲线的参数方程为
(
为参数),曲线
的极坐标方程
.
(Ⅰ)将曲线的参数方程化为普通方程,将曲线
的极坐标方程化为直角坐标方程;
(Ⅱ)曲线,
是否相交,若相交请求出公共弦的长,若不相交,请说明理由.
已知函数
(Ⅰ) 求函数的单调区间;
(Ⅱ) 当时,求函数
在
上的最小值.