在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,设O为坐标原点,点P的坐标为记
.
(1)求随机变量 的最大值,并求事件“
取得最大值”的概率;
(2)求随机变量的分布列和数学期望.
如图,在四棱锥中,底面
为矩形,
.
(1)求证,并指出异面直线PA与CD所成角的大小;
(2)在棱上是否存在一点
,使得
?如果存在,求出此时三棱锥
与四棱锥
的体积比;如果不存在,请说明理由.
已知数列为等比数列,其前n项和为
,且满足
,
成等差数列.
(1)求数列的通项公式;
(2)已知,记
,求数列
前n项和
.
设函数.
(1)求的值域;
(2)记△ABC的内角A,B,C的对边长分别为a,b,c,若,求a的值.
定义:若在
上为增函数,则称
为“k次比增函数”,其中
. 已知
其中e为自然对数的底数.
(1)若是“1次比增函数”,求实数a的取值范围;
(2)当时,求函数
在
上的最小值;
(3)求证:.
已知椭圆的离心率
,且直线
是抛物线
的一条切线.
(1)求椭圆的方程;
(2)点P 为椭圆上一点,直线
,判断l与椭圆的位置关系并给出理由;
(3)过椭圆上一点P作椭圆的切线交直线于点A,试判断线段AP为直径的圆是否恒过定点,若是,求出定点坐标;若不是,请说明理由.