设函数,其中
,
为正整数,
,
,
均为常数,曲线
在
处的切线方程为
.
(1)求,
,
的值;
(2)求函数的最大值;
(3)证明:对任意的都有
.(
为自然对数的底)
如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.
(1)证明:PQ∥平面ACD;
(2)求AD与平面ABE所成角的正弦值.
(本小题满分12分)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:
组别 |
A |
B |
C |
D |
E |
人数 |
50 |
100 |
150 |
150 |
50 |
(1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取了6人,请将其余各组抽取的人数填入下表.
组别 |
A |
B |
C |
D |
E |
人数 |
50 |
100 |
150 |
150 |
50 |
抽取人数 |
6 |
(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.
在设内角A,B,C的对边分别为
,向量
,向量
,若
(1)求内角A的大小;
(2)若且
求
的面积
选修4—5:不等式选讲
设函数
(1)求不等式的解集;
(2)若恒成立,求实数
的取值范围.
选修4—4:坐标系与参数方程
已知直线的参数方程为
(
为参数),曲线
的参数方程为
(
为参数),设直线
与曲线
交于
两点.
(1)求直线与曲线
的普通方程;
(2)设, 求
的值.