在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,且AC=AD=CD=DE=2,AB=1.
(1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一结论;
(2)求多面体ABCDE的体积.
设等差数列的前n项和为
,且
,
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列前n项和为
,且
,令
.求数列
的前n项和
.
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且.
(Ⅰ)求证:EF∥平面BDC1;
(Ⅱ)求二面角E-BC1-D的余弦值.
设函数.其中
(1)求的最小正周期;
(2)当时,求实数
的值,使函数
的值域恰为
并求此时
在
上的对称中心.
(本小题满分12分)已知直角的三边长
,满足
(1)已知均为正整数,且
成等差数列,将满足条件的三角形的面积从小到大排成一列
,且
,求满足不等式
的所有
的值;
(2)已知成等比数列,若数列
满足
,证明数列
中的任意连续三项为边长均可以构成直角三角形,且
是正整数.
(本小题满分12分)已知椭圆的离心率为
,
在椭圆C上,A,B为椭圆C的左、右顶点.
(1)求椭圆C的方程:
(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线相交于M1,M2.问是否存在x轴上定点D,使得以M1M2为直径的圆恒过点D?若存在,求点D的坐标:若不存在,说明理由.