某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间。按年龄分组:第1组,第2组
,第3组
,第4组
,第5组
,由统计的数据得到的频率分布直方图如图所示,在其右面的表是年龄的频率分布表。
(1)求正整数a,b,N的值;
(2)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组中抽取的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1 人在第3组的概率。
如图所示,矩形中,
⊥平面
,
,
为
上的点,且
⊥平面
.
(1)求证:⊥平面
;
(2)求三棱锥的体积.
在如图所示的几何体中,四边形是正方形,
⊥平面
,
∥
,
、
、
分别为
、
、
的中点,且
.
(1)求证:平面⊥平面
;
(2)求三棱锥与四棱锥
的体积之比.
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,是
的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求出该几何体的体积;
(2)若是
的中点,求证:
∥平面
;
(3)求证:平面⊥平面
.
如图,在直角梯形中,
,
∥
,
,
为线段
的中点,将
沿
折起,使平面
⊥平面
,得到几何体
.
(1)若,
分别为线段
,
的中点,求证:
∥平面
;
(2)求证:⊥平面
;
(3)的值.
设函数f(x)=cos2ωx+sinωxcosωx+a(其中ω>0,a∈R),且f(x)的图象在y轴右侧的第一个最高点的横坐标为
.
(1)求ω的值;
(2)如果f(x)在区间上的最小值为
,求a的值.