某制造商3月生产了一批乒乓球,随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如表:
分组 |
频数 |
频率 |
![]() |
[39.95,39.97) |
10 |
|
|
[39.97,39.99) |
20 |
|
|
[39.99,40.01) |
50 |
|
|
[40.01,40.03] |
20 |
|
|
合计 |
100 |
|
|
(1)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图.
(2)若以上述频率作为概率,已知标准乒乓球的直径为40.00mm,试求这批乒乓球的直径误差不超过0.03mm的概率.
(3)统计方法中,同一组数据常用该组区间的中点值(例如,区间[39.99,40.01)的中点值是40.00)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).
(本小题满分14分)已知函数,其中a为实数.
(1)求g(x)的极值;
(2)设a<0,若对任意的,
恒成立,求a的最小值.
(本小题满分13分)如图,分别过椭圆:
左右焦点
、
的动直线
相交于
点,与椭圆
分别交于
不同四点, 直线
的斜率
、
、
、
满足
.已知当
轴重合时,
,
.
(1)求椭圆的方程;
(2)是否存在定点,使得
为定值.若存在,求出
点坐标并求出此定值,若不存在,说明理由.
(本小题满分13分)某工厂生产A,B两种型号的玩具,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种玩具各100件进行检测,检测结果统计如下:
测试指标 |
[70,76) |
[76,82) |
[82,88) |
[88,94) |
[94,100) |
玩具A |
8 |
12 |
40 |
32 |
8 |
玩具B |
7 |
18 |
40 |
29 |
6 |
(Ⅰ)试分别估计玩具A、玩具B为正品的概率;
(Ⅱ)生产一件玩具A,若是正品可盈利40元,若是次品则亏损5元;生产一件玩具B,若是正品可盈利50元,若是次品则亏损10元.在(I)的前提下,
(i)记X为生产1件玩具A和1件玩具B所得的总利润,求随机变量X的分布列和数学期望;
(ii)求生产5件玩具B所获得的利润不少于140元的概率.
(本小题满分13分)如图,在三棱柱,
⊥平面ABC,BC⊥AC,BC=AC=2,D为AC的中点.
(1)求证:平面
;
(2)若二面角大小为
,求直线
与
所成角的大小.
(本小题满分13分)已知函数.
(1)求函数的最小正周期和单调递增区间;
(2)若在中,角
,
,
的对边分别为
,
,
,
,
为锐角,且
,求
面积
的最大值.