(本小题满分12分) 直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的方程为,直线
方程为
(t为参数),直线
与C的公共点为T.
(1)求点T的极坐标;
(2)过点T作直线,
被曲线C截得的线段长为2,求直线
的极坐标方程.
奖器有个小球,其中
个小球上标有数字
,
个小球上标有数字
,现摇出
个小球,规定所得奖金(元)为这
个小球上记号之和,求此次摇奖获得奖金数额的数学期望。
已知.(1)设
(2)如果求实数
的值.
已知求证:
已知双曲线C1:(a>0),抛物线C2的顶点在原点O,C2的焦点是C1的左焦点F1。
(1)求证:C1,C2总有两个不同的交点;
(2)问:是否存在过C2的焦点F1的弦AB,使ΔAOB的面积有最大值或最小值?若存在,求直线AB的方程与SΔAOB的最值,若不存在,说明理由。
如图,已知矩形ABCD中,AB=1,BC=,PA
平面ABCD,且PA=1。
(1)问BC边上是否存在点Q,使得PQQD?并说明理由;
(2)若边上有且只有一个点Q,使得PQQD,求这时二面角Q
的正切。