如图,把边长为10的正六边形纸板剪去相同的六个角,做成一个底面为正六边形的无盖六棱柱盒子,设其高为h,体积为V(不计接缝).
(1)求出体积V与高h的函数关系式并指出其定义域;
(2)问当为多少时,体积V最大?最大值是多少?
设函数在
处取得极值,且曲线
在点
处的切线垂直于直线
.
(1)求的值;
(2)若函数,讨论
的单调性.
设函数是定义在R上的奇函数,对任意实数
有
成立.
(1)证明是周期函数,并指出其周期;
(2)若,求
的值;
(3)若,且
是偶函数,求实数
的值.
已知函数.
(1)若.
(2)若函数在
上是增函数,求
的取值范围.
二次函数f(x)满足f (x+1)-f (x)=2x且f (0)=1.
⑴求f (x)的解析式;
⑵在区间[-1,1]上,y=f (x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.
已知函数,
,且
在点(1,
)处的切线方程为
。
(1)求的解析式;
(2)求函数的单调递增区间;
(3)设函数,若方程
有且仅有四个解,求实数a的取值范围。