设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程.
(2)设g(x)=f′(x)e﹣x.求函数g(x)的极值.
已知函数
(I)若直线l1交函数f(x)的图象于P,Q两点,与l1平行的直线与函数
的图象切于点R,求证 P,R,Q三点的横坐标成等差数列;
(II)若不等式恒成立,求实数a的取值范围;
(III)求证:〔其中
, e为自然对数的底数)
已知椭圆的左、右焦点分别为
,离心率
,A为右顶点,K为右准线与X轴的交点,且
.
(I)求椭圆的标准方程;
(II)设椭圆的上顶点为B,问是否存在直线l,使直线l交椭圆于C,D两点,且椭圆的左焦点巧恰为ΔBCD的垂心?若存在,求出l的方程r若不存在,请说明理由.
已知数列{an}的前n项和,数列
为等比数列,且首项b1和公比q满足:
(I)求数列的通项公式;
(II)设,记数列
的前n项和
,若不等式
对任意
恒成立,求实数
的最大值.
已知圆C的半径为1,圆心C在直线l1:上,且其横坐标为整数,又圆C截直线
所得的弦长为
•
(I )求圆C的标准方程;
(II)设动点P在直线上,过点P作圆的两条切线PA, PB,切点分别为A ,B求四边形PACB面积的最小值.
为备战2012年伦敦奥运会,爾家篮球队分轮次迸行分项冬训.训练分为甲、乙两组,根据经验,在冬训期间甲、乙两组完成各项训练任务的概率分别为和P(P>0)假设每轮训练中两组都各有两项训练任务需完成,并且每项任务的完成与否互不影响.若在一轮冬训中,两组完成训练任务的项数相等且都不小于一项,则称甲、乙两组为“友好组”
(I)若求甲、乙两组在完成一轮冬训中成为“友好组”的概率;
(II)设在6轮冬训中,甲、乙两组成为“友好组”的次数为,当
时,求P的取值范围.