如图, ,点 是 上一点, , 平分 交 于点 ,求 的度数.
如图1,二次函数 的图象与一次函数 的图象交于 , 两点,点 的坐标为 ,点 在第一象限内,点 是二次函数图象的顶点,点 是一次函数 的图象与 轴的交点,过点 作 轴的垂线,垂足为 ,且 .
(1)求直线 和直线 的解析式;
(2)点 是线段 上一点,点 是线段 上一点, 轴,射线 与抛物线交于点 ,过点 作 轴于点 , 于点 .当 与 的乘积最大时,在线段 上找一点 (不与点 ,点 重合),使 的值最小,求点 的坐标和 的最小值;
(3)如图2,直线 上有一点 ,将二次函数 沿直线 平移,平移的距离是 ,平移后抛物线上点 ,点 的对应点分别为点 ,点 ;当△ 是直角三角形时,求 的值.
已知 是等腰直角三角形, , , , ,连接 ,点 是 的中点.
(1)如图1,若点 在 边上,连接 ,当 时,求 的长;
(2)如图2,若点 在 的内部,连接 ,点 是 中点,连接 , ,求证: ;
(3)如图3,将图2中的 绕点 逆时针旋转,使 ,连接 ,点 是 中点,连接 ,探索 的值并直接写出结果.
我们知道,任意一个正整数 都可以进行这样的分解: , 是正整数,且 ,在 的所有这种分解中,如果 , 两因数之差的绝对值最小,我们就称 是 的最佳分解.并规定: .例如12可以分解成 , 或 ,因为 ,所以 是12的最佳分解,所以 .
(1)如果一个正整数 是另外一个正整数 的平方,我们称正整数 是完全平方数.求证:对任意一个完全平方数 ,总有 ;
(2)如果一个两位正整数 , , , 为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数 为"吉祥数",求所有"吉祥数"中 的最大值.
近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.
(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了 .某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?
(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调 出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了 ,且储备猪肉的销量占总销量的 ,两种猪肉销售的总金额比5月20日提高了 ,求 的值.