已知集合,
(1)当时,求
;
(2)若,求实数
的取值范围.
设函数.其中
(1)求的最小正周期;
(2)当时,求实数
的值,使函数
的值域恰为
并求此时
在
上的对称中心.
(本小题满分12分)已知直角的三边长
,满足
(1)已知均为正整数,且
成等差数列,将满足条件的三角形的面积从小到大排成一列
,且
,求满足不等式
的所有
的值;
(2)已知成等比数列,若数列
满足
,证明数列
中的任意连续三项为边长均可以构成直角三角形,且
是正整数.
(本小题满分12分)已知椭圆的离心率为
,
在椭圆C上,A,B为椭圆C的左、右顶点.
(1)求椭圆C的方程:
(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线相交于M1,M2.问是否存在x轴上定点D,使得以M1M2为直径的圆恒过点D?若存在,求点D的坐标:若不存在,说明理由.
在中,角
所对的边分别为
,
,且
.求:
(1)求角的值;
(2)求的取值范围.
(本小题满分13分)时下,网校教学越越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格
(单位:元/套)满足的关系式
,其中
,
为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求的值;
(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)