已知函数.
(1)若函数在
上是增函数,求实数
的取值范围;
(2)若函数在
上的最小值为3,求实数
的值.
已知圆O:交x轴于A,B两点,曲线C是以AB为长轴,离心率为
的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点P作直线PF的垂线交直线
于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
已知△BCD中,∠BCD=,BC=CD=1,AB⊥平面BCD,∠ADB=
,E、F分别是AC、AD上的动点,且
(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(Ⅱ)当λ为何值时,平面BEF⊥平面ACD ?
某商家有一种商品,成本费为a 元,如果月初售出可获利100元,再将本利都存入银行,已知银行月息为2.4%,如果月末售出可获利120元,但要付保管费5元,试就 a的取值说明这种商品是月初售出好,还是月末售出好?
求斜率为,且与坐标轴所围成的三角形的周长是12的直线的方程。
已知函数
(1)若在
上单调递增,求
的取值范围;
(2)若定义在区间D上的函数对于区间
上的任意两个值
总有以下不等式
成立,则称函数
为区间
上的 “凹函数”.试证当
时,
为“凹函数”.