为推进成都市教育均衡发展,某中学需进一步壮大教师队伍,拟准备招聘一批优秀大学生到本单位就业,但在签约前要对他们的师范生素质进行测试。在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为。(1)求该小组中女生的人数;(2)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为
,每个男生通过的概率均为
。现对该小组中男生甲.男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量
,求
的分布列和数学期望.
在
中,内角
的对边分别是
,且
.
(1)求
;
(2)设
,
为
的面积,求
的最大值,并指出此时
的最值.
从某居民区随机抽取10个家庭,获得第
个家庭的月收入
(单位:千元)与月储蓄
(单位:千元)的数据资料,算得
.(1)求家庭的月储蓄
对月收入
的线性回归方程
;
(2)判断变量
与
之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
附:线性回归方程
中,
,其中
为样本平均值,线性回归方程也可写为
.
设数列
满足:
.
(1)求
的通项公式及前
项和
;
(2)已知
是等差数列,
为前
项和,且
,求
.
如图,椭圆的中心为原点
,长轴在
轴上,离心率
,过左焦点
作
轴的垂线交椭圆于
两点,
.
(1)求该椭圆的标准方程;
(2)取平行于
轴的直线与椭圆相交于不同的两
,过
作圆心为
的圆,使椭圆上的其余点均在圆
外.求
的面积
的最大值,并写出对应的圆
的标准方程.
对正整数
,记
,
.
(1)求集合
中元素的个数;
(2)若
的子集
中任意两个元素之和不是整数的平方,则称
为"稀疏集".求
的最大值,使
能分成两个不相交的稀疏集的并集.