已知夹角为
,且
,
,求:
(1); (2)
与
的夹角。
某校为了解毕业班学业水平考试学生的数学考试情况, 抽取了该校100名学生的数学成绩, 将所有数据整理后, 画出了样频率分布直方图(所图所示), 若第1组、第9组的频率各为.
(Ⅰ) 求的值, 并估计这次学业水平考试数学成绩的平均数;
(Ⅱ)若全校有1500名学生参加了此次考试,估计成绩在分内的人数.
如图,在三棱锥P-ABC中, AB="AC=4," D、E、F分别为PA、PC、BC的中点, BE="3," 平面PBC⊥平面ABC, BE⊥DF.
(Ⅰ)求证:BE⊥平面PAF;
(Ⅱ)求直线AB与平面PAF所成的角.
已知函数的图像上两相邻最高点的坐标分别为
.
(Ⅰ)求的值;
(Ⅱ)在△ABC中,分别是角A,B,C的对边,且
求
的取值范围.
已知函数,其中
为正常数.
(Ⅰ)求函数在
上的最大值;
(Ⅱ)设数列满足:
,
,
(1)求数列的通项公式
;
(2)证明:对任意的,
;
(Ⅲ)证明:.
已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形, 两准线间的距离为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线过点P(0, 2)且与椭圆相交于A.、B两点,当△AOB面积取得最大值时, 求直线
的方程.