在正三棱柱ABC-A1B1C1中,AB=AA1,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且
.
(1)求证:EF∥平面BDC1;
(2)求证:
平面
.
有以下三个不等式:
;
;
.
请你观察这三个不等式,猜想出一个一般性的结论,并证明你的结论。
设函数f(x)=
在[1,+∞
上为增函数.
(1)求正实数a的取值范围;
(2)比较
的大小,说明理由;
(3)求证:
(n∈N*, n≥2)
已知f(n)=(2n+7)3n+9,存在自然数m,使得对任意正整数n,都能使m整除f(n),猜测出最大的m的值。并用数学归纳法证明你的猜测是正确的。
如图,在三棱柱
中,
侧面
,
为棱
上异于
的一点,
,已知
,求:
(Ⅰ)异面直线
与
的距离;
(Ⅱ)二面角
的平面角的正切值.
已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.