已知函数f(x)=sinx,g(x)=mx- (m为实数).
(1)求曲线y=f(x)在点P(),f(
)处的切线方程;
(2)求函数g(x)的单调递减区间;
(3)若m=1,证明:当x>0时,f(x)<g(x)+.
如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.
(1)求证:DE∥平面BCP;
(2)求证:四边形DEFG为矩形;
(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.
某班同学利用国庆节进行社会实践,对岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(Ⅰ)补全频率分布直方图并求、
、
的值;
(Ⅱ)从年龄段在的“低碳族”中采用分层抽样法抽取
人参加户外低碳体验活动,其中选取
人作为领队,求选取的
名领队中恰有1人年龄在
岁的概率.
已知锐角中内角
、
、
的对边分别为
、
、
,
,且
.
(Ⅰ)求角的值;
(Ⅱ)设函数,
图象上相邻两最高点间的距离为
,求
的取值范围.
(本小题满分10分)选修4—5:不等式选讲
设函数.
(1)当时,解不等式
;
(2)若的解集为
,
,求证:
.
(本小题满分10分)选修4-4:坐标系与参数方程
已知椭圆,直线
(
为参数).
(1)写出椭圆的参数方程及直线
的普通方程;
(2)设,若椭圆
上的点
满足到点
的距离与其到直线
的距离相等,求点
的坐标.