在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1.
(1)设平面ABE与平面ACD的交线为直线,求证:
∥平面BCDE;
(2)设F是BC的中点,求证:平面AFD⊥平面AFE;
(3)求几何体ABCDE的体积.
求证:。
解不等式。
已知关于的方程
有唯一解,求
的值;
若抛物线 y=-x2十mx-1和两端点 A(0, 3),B(3, 0)的线段AB有两个不同的交点,求m的取值范围.
某车间生产某种产品,固定成本2万元,每生产 1件产品成本增加 100元.根据经验,当年产量少于400件时,总收益R(成本与总利润的和,单位:元)是年产量Q(单位:件)的二次函数,当年产量不少于400件时,R是Q的一次函数,以下是年产量Q与总收益R的部分数据:
Q(件) |
50 |
200 |
350 |
500 |
650 |
R(元) |
23750 |
80000 |
113750 |
125000 |
132500 |
试问每年生产多少件产品时,总利润最大?最大总利润是多少元?