游客
题文

某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为: [ 0 , 2 ] , ( 2 , 4 ] , ( 4 , 6 ] , ( 6 , 8 ] , ( 8 , 10 ] , ( 10 , 12 ] .估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有 95 ℅的把握认为"该校学生的每周平均体育运动时间与性别有关".
附:
K 2 = n ( a d - b c ) 2 ( a + b ) ( c + d ) ( a + c ) ( b + d )

P ( K 2 k 0 ) 0.10
0.05
0.010
0.005
k 0 2.706
3.841
6.635
7.879
科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值Q(a).

如图,在C城周边已有两条公路l1l2在点O处交汇.已知OC=()km,∠AOB=75°,∠AOC=45°,现规划在公路l1l2上分别选择AB两处为交汇点(异于点O)直接修建一条公路通过C城.设OAx km,OBy km.

(1)求y关于x的函数关系式并指出它的定义域;
(2)试确定点AB的位置,使△OAB的面积最小.

设函数f(x)=ax2bxb-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的零点;
(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.

已知函数f(x)=ex-ex(x∈R且e为自然对数的底数).
(1)判断函数f(x)的奇偶性与单调性;
(2)是否存在实数t,使不等式f(xt)+f(x2t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.

已知二次函数f(x)=ax2bx+1(a>0),F(x)=f(-1)=0,且对任意实数x均有f(x)≥0成立.
(1)求F(x)的表达式;
(2)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求k的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号