已知椭圆的离心率,分别为椭圆的长轴和短轴的端点,为中点,为坐标原点,且.(1)求椭圆的方程;(2)过点的直线交椭圆于两点,求面积最大时,直线的方程.
(本题13分) 已知平面直角坐标系内三点 (1) 求过三点的圆的方程,并指出圆心坐标与圆的半径. (2)求过点与条件 (1) 的圆相切的直线方程.
(本题12分) 设,,其中. (1) 若,求的值; (2)若,求的取值范围.
(本题12分) 已知平面,且是垂足, 证明:
(本题12分) 已知直线,.求和轴所围成的三角形面积.
已知函数,为的导数. (1)当时,求的单调区间和极值; (2)设,是否存在实数,对于任意的,存在,使得成立?若存在,求出的取值范围;若不存在,说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号