甲、乙两人参加某电视台举办的答题闯关游戏,按照规则,甲先从6道备选题中一次性抽取3道题独立作答,然后由乙回答剩余3题,每人答对其中2题就停止答题,即闯关成功.已知在6道被选题中,甲能答对其中的4道题,乙答对每道题的概率都是.
(1)求甲、乙至少有一人闯关成功的概率;
(2)设甲答对题目的个数为ξ,求ξ的分布列.
(本小题满分12分)
对某校高二年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这
名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率
分布直方图如下:
分组 |
频数 |
频率 |
![]() |
10 |
0.25 |
![]() |
24 |
![]() |
![]() |
![]() |
![]() |
![]() |
2 |
0.05 |
合计 |
![]() |
1 |
(1)求出表中及图中
的值;
(2)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.
.(本小题满分12分)
已知函数
(1)求函数的最大值和最小正周期;
(2)设的内角
的对边分别
且
,
,若
求
的值.
(本小题满分13分)
已知,
,
.
(1)当时,试比较
与
的大小关系;
(2)猜想与
的大小关系,并给出证明.
13分)已知函数
(1)求的单调区间;
(2)设,若
在
上不单调且仅在
处取得最大值,求
的取值范围.
已知是函数
的一个极值点.
(1)求;(2)求函数
的单调区间;
(3)若直线与函数
的图象有
个交点,求
的取值范围.